Molecular cloning and characterization of the 15-kilodalton major immunogen of Treponema pallidum.
نویسندگان
چکیده
Pathogen-specific membrane immunogens of Treponema pallidum subsp. pallidum (T. pallidum) have been identified previously by phase partitioning with the nonionic detergent Triton X-114. One of these antigens, a 15-kilodalton (kDa) polypeptide, is expressed in relatively small quantities in T. pallidum but is highly immunogenic in both human and experimental syphilis. The native T. pallidum antigen was purified to homogeneity from the mixture of Triton X-114 detergent-phase proteins by chromatofocusing. Recombinant Escherichia coli clones were selected from a T. pallidum genomic DNA library by using monoclonal antibodies specific to the 15-kDa antigen; immunoblotting and minicell analyses confirmed expression of the 15-kDa protein in the transformants. Southern hybridization with a 1.1-kilobase fragment of DNA encoding the 15-kDa-antigen gene indicated that the gene is probably present in a single copy within the genomes of both T. pallidum and T. pallidum subsp. pertenue (the agent of yaws), while it is absent from the genome of the nonpathogenic Treponema phagedenis biotype Reiter. Cell fractionation studies with Triton X-114 demonstrated that the recombinant polypeptide possesses hydrophobic properties similar to those of the native antigen and localized the cloned 15-kDa antigen to the inner membrane of E. coli. Protein processing experiments in minicells revealed that a precursor appears to be processed to the mature 15-kDa polypeptide.
منابع مشابه
Sequence analysis of the 47-kilodalton major integral membrane immunogen of Treponema pallidum.
The complete primary amino acid sequence for the 47-kilodalton (kDa) major integral membrane immunogen of Treponema pallidum subsp. pallidum was obtained by using a combined strategy of DNA sequencing (of the cloned gene in Escherichia coli) and N-terminal amino acid sequencing of the native (T. pallidum subsp. pallidum-derived) antigen. An open reading frame believed to encode the 47-kDa antig...
متن کاملMonoclonal antibody with hemagglutination, immobilization, and neutralization activities defines an immunodominant, 47,000 mol wt, surface-exposed immunogen of Treponema pallidum (Nichols)
Radioimmunoprecipitation (RIP) analyses performed on 125I-surface-labeled Treponema pallidum cells using various immune sera revealed the presence of six major surface antigens (immunogens) with apparent molecular weights of 47 K, 36 K, 34 K, 32 K, 29 K, and 13 K. Among these, the 47 K surface antigen was most abundant. Radioimmunoprecipitation assays using 125I-labeled T. phagedenis biotype Re...
متن کاملMolecular cloning and characterization of a 35.5-kilodalton lipoprotein of Treponema pallidum.
A clone expressing a 35.5-kDa recombinant treponemal protein was isolated from a genomic DNA library constructed from Treponema pallidum street strain 14. Polyclonal antiserum raised against the recombinant protein reacted with a corresponding native protein of comparable size in T. pallidum that is specific to the pathogenic treponemes. Radiolabeling of the recombinant protein with [3H]palmita...
متن کاملMolecular characterization of the pathogen-specific, 34-kilodalton membrane immunogen of Treponema pallidum.
The 34-kilodalton (kDa) antigen of Treponema pallidum subsp. pallidum (T. pallidum) is a pathogen-specific integral membrane protein. DNA sequence analysis of the cloned gene revealed an open reading frame encoding a primary product of 204 residues with a molecular mass of 22,087 daltons. Sequences that correspond to a consensus Escherichia coli promoter and a ribosome-binding site were found u...
متن کاملThe 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity.
The recent model of Treponema pallidum molecular architecture proposes that the vast majority of the bacterium's integral membrane proteins are lipoprotein immunogens anchored in the cytoplasmic membrane while the outer membrane contains only a limited number of surface-exposed transmembrane proteins. This unique model explains, in part, the organism's remarkable ability to evade host immune de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 57 12 شماره
صفحات -
تاریخ انتشار 1989